Carnosine
![]() | |
Names | |
---|---|
IUPAC name
β-Alanylhistidine
| |
Systematic IUPAC name
(2S)-2-(3-Aminopropanamido)-3-(3H-imidazol-4-yl)propanoic acid | |
Other names
β-Alanyl-L-histidine
| |
Identifiers | |
3D model (JSmol)
|
|
ChEBI | |
ChEMBL | |
ChemSpider | |
ECHA InfoCard | 100.005.610 |
KEGG | |
PubChem CID
|
|
UNII | |
CompTox Dashboard (EPA)
|
|
| |
| |
Properties | |
C9H14N4O3 | |
Molar mass | 226.236 g·mol−1 |
Appearance | Crystalline solid |
Melting point | 253 °C (487 °F; 526 K) (decomposition) |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Carnosine (beta-alanyl-L-histidine) is a dipeptide molecule, made up of the amino acids beta-alanine and histidine. It is highly concentrated in muscle and brain tissues.[citation needed] Carnosine was discovered by Russian chemist Vladimir Gulevich.[1]
Carnosine is naturally produced by the body in the liver[2] from beta-alanine and histidine. Like carnitine, carnosine is composed of the root word carn, meaning "flesh", alluding to its prevalence in meat.[3] There are no plant-based sources of carnosine.[4] Carnosine is readily available as a synthetic nutritional supplement.
Carnosine can chelate divalent metal ions.[5] Carnosine is also considered a geroprotectant.[6]
Products containing carnosine are also used in topical preparations to reduce wrinkles on the skin.[7]
Carnosine may increase the Hayflick limit in human fibroblasts, it also appears to reduce the rate of telomere shortening.[8] This could potentially promote the growth of certain cancers that thrive due to telomere preservation.[7]
Biosynthesis
[edit]Carnosine is synthesized within the body from beta-alanine and histidine. Beta-alanine is a product of pyrimidine catabolism[9] and histidine is an essential amino acid. Since beta-alanine is the limiting substrate, supplementing just beta-alanine effectively increases the intramuscular concentration of carnosine.[10][11]
Physiological effects
[edit]pH buffer
[edit]Carnosine has a pKa value of 6.83, making it a good buffer for the pH range of animal muscles.[12] Since beta-alanine is not incorporated into proteins, carnosine can be stored at relatively high concentrations (millimolar). Occurring at 17–25 mmol/kg (dry muscle),[13] carnosine (β-alanyl-L-histidine) is an important intramuscular buffer, constituting 10-20% of the total buffering capacity in type I and II muscle fibres.
Anti-oxidant
[edit]Carnosine has been shown to scavenge reactive oxygen species (ROS) as well as alpha-beta unsaturated aldehydes formed from peroxidation of cell membrane fatty acids during oxidative stress. It also buffers pH in muscle cells, and acts as a neurotransmitter in the brain. It is also a zwitterion, a neutral molecule with a positive and negative end.[citation needed]
Antiglycating
[edit]Carnosine acts as an antiglycating agent, reducing the rate of formation of advanced glycation end-products (substances that can be a factor in the development or worsening of many degenerative diseases, such as diabetes, atherosclerosis, chronic kidney failure, and Alzheimer's disease[14]), and ultimately reducing development of atherosclerotic plaque build-up.[15][16][17]
Geroprotective
[edit]Carnosine is considered as a geroprotector.[18] Carnosine can increase the Hayflick limit in human fibroblasts,[19] as well as appearing to reduce the telomere shortening rate.[20] Carnosine may also slow aging through its anti-glycating properties (chronic glycolyating is speculated to accelerate aging).[21]
Other
[edit]Carnosine can chelate divalent metal ions.[15][22] It has been suggested that binding Ca2+ may displace protons, thereby providing a link between Ca2+ and H+ buffering. [23] However, there is still controversy as to how much Ca2+ is bound to carnosine under physiological conditions. [24]
See also
[edit]- Acetylcarnosine, a similar molecule used to treat lens cataracts
- Anserine, another dipeptide antioxidant (found in birds)
- Carnosine synthase, an enzyme that helps carnosine production
- Carnosinemia, a disease of excess carnosine due to an enzyme defect/deficiency
References
[edit]- ^ Gulewitsch, Wl.; Amiradžibi, S. (1900). "Ueber das Carnosin, eine neue organische Base des Fleischextractes". Berichte der Deutschen Chemischen Gesellschaft. 33 (2): 1902–1903. doi:10.1002/cber.19000330275.
- ^ Trexler, Eric T.; Smith-Ryan, Abbie E.; Stout, Jeffrey R.; Hoffman, Jay R.; Wilborn, Colin D.; Sale, Craig; Kreider, Richard B.; Jäger, Ralf; Earnest, Conrad P.; Bannock, Laurent; Campbell, Bill (2015-07-15). "International society of sports nutrition position stand: Beta-Alanine". Journal of the International Society of Sports Nutrition. 12: 30. doi:10.1186/s12970-015-0090-y. ISSN 1550-2783. PMC 4501114. PMID 26175657.
- ^ Hipkiss, A. R. (2006). "Does chronic glycolysis accelerate aging? Could this explain how dietary restriction works?". Annals of the New York Academy of Sciences. 1067 (1): 361–8. Bibcode:2006NYASA1067..361H. doi:10.1196/annals.1354.051. PMID 16804012. S2CID 41175541.
- ^ Alan R. Hipkiss (2009). "Chapter 3: Carnosine and Its Possible Roles in Nutrition and Health". Advances in Food and Nutrition Research.
- ^ Reddy, V. P.; Garrett, MR; Perry, G; Smith, MA (2005). "Carnosine: A Versatile Antioxidant and Antiglycating Agent". Science of Aging Knowledge Environment. 2005 (18): pe12. doi:10.1126/sageke.2005.18.pe12. PMID 15872311.
- ^ Boldyrev, A. A.; Stvolinsky, S. L.; Fedorova, T. N.; Suslina, Z. A. (2010). "Carnosine as a natural antioxidant and geroprotector: From molecular mechanisms to clinical trials". Rejuvenation Research. 13 (2–3): 156–8. doi:10.1089/rej.2009.0923. PMID 20017611.
- ^ a b Schwarz, E; Guest, P C; Rahmoune, H; Wang, L; Levin, Y; Ingudomnukul, E; Ruta, L; Kent, L; et al. (2010). "Sex-specific serum biomarker patterns in adults with Asperger's syndrome". Molecular Psychiatry. 16 (12): 1213–20. doi:10.1038/mp.2010.102. PMID 20877284.
- ^ Shao, Lan; Li, Qing-Huan; Tan, Zheng (2004). "L-Carnosine reduces telomere damage and shortening rate in cultured normal fibroblasts". Biochemical and Biophysical Research Communications. 324 (2): 931–6. doi:10.1016/j.bbrc.2004.09.136. PMID 15474517.
- ^ "beta-ureidopropionate + H2O => beta-alanine + NH4+ + CO2". reactome. Archived from the original on 2013-10-23. Retrieved 2020-02-08.
Cytosolic 3-ureidopropionase catalyzes the reaction of 3-ureidopropionate and water to form beta-alanine, CO2, and NH3 (van Kuilenberg et al. 2004).
- ^ Derave W, Ozdemir MS, Harris R, Pottier A, Reyngoudt H, Koppo K, Wise JA, Achten E (August 9, 2007). "Beta-alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters". J Appl Physiol. 103 (5): 1736–43. doi:10.1152/japplphysiol.00397.2007. PMID 17690198. S2CID 6990201.
- ^ Hill CA, Harris RC, Kim HJ, Harris BD, Sale C, Boobis LH, Kim CK, Wise JA (2007). "Influence of beta-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity". Amino Acids. 32 (2): 225–33. doi:10.1007/s00726-006-0364-4. PMID 16868650. S2CID 23988054.
- ^ Bate-Smith, EC (1938). "The buffering of muscle in rigor: protein, phosphate and carnosine". Journal of Physiology. 92 (3): 336–343. doi:10.1113/jphysiol.1938.sp003605. PMC 1395289. PMID 16994977.
- ^ Mannion, AF; Jakeman, PM; Dunnett, M; Harris, RC; Willan, PLT (1992). "Carnosine and anserine concentrations in the quadriceps femoris muscle of healthy humans". Eur. J. Appl. Physiol. 64 (1): 47–50. doi:10.1007/BF00376439. PMID 1735411. S2CID 24590951.
- ^ Vistoli, G; De Maddis, D; Cipak, A; Zarkovic, N; Carini, M; Aldini, G (Aug 2013). "Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation". Free Radic. Res. 47: Suppl 1:3–27. doi:10.3109/10715762.2013.815348. PMID 23767955. S2CID 207517855.
- ^ a b Reddy, V. P.; Garrett, MR; Perry, G; Smith, MA (2005). "Carnosine: A Versatile Antioxidant and Antiglycating Agent". Science of Aging Knowledge Environment. 2005 (18): pe12. doi:10.1126/sageke.2005.18.pe12. PMID 15872311.
- ^ Rashid, Imran; Van Reyk, David M.; Davies, Michael J. (2007). "Carnosine and its constituents inhibit glycation of low-density lipoproteins that promotes foam cell formation in vitro". FEBS Letters. 581 (5): 1067–70. Bibcode:2007FEBSL.581.1067R. doi:10.1016/j.febslet.2007.01.082. PMID 17316626. S2CID 46535145.
- ^ Hipkiss, A. R. (2005). "Glycation, ageing and carnosine: Are carnivorous diets beneficial?". Mechanisms of Ageing and Development. 126 (10): 1034–9. doi:10.1016/j.mad.2005.05.002. PMID 15955546. S2CID 19979631.
- ^ Boldyrev, A. A.; Stvolinsky, S. L.; Fedorova, T. N.; Suslina, Z. A. (2010). "Carnosine as a natural antioxidant and geroprotector: From molecular mechanisms to clinical trials". Rejuvenation Research. 13 (2–3): 156–8. doi:10.1089/rej.2009.0923. PMID 20017611.
- ^ McFarland, G; Holliday, R (1994). "Retardation of the Senescence of Cultured Human Diploid Fibroblasts by Carnosine". Experimental Cell Research. 212 (2): 167–75. doi:10.1006/excr.1994.1132. PMID 8187813.
- ^ Shao, Lan; Li, Qing-Huan; Tan, Zheng (2004). "L-Carnosine reduces telomere damage and shortening rate in cultured normal fibroblasts". Biochemical and Biophysical Research Communications. 324 (2): 931–6. doi:10.1016/j.bbrc.2004.09.136. PMID 15474517.
- ^ Hipkiss, A. R. (2006). "Does Chronic Glycolysis Accelerate Aging? Could This Explain How Dietary Restriction Works?". Annals of the New York Academy of Sciences. 1067 (1): 361–8. Bibcode:2006NYASA1067..361H. doi:10.1196/annals.1354.051. PMID 16804012. S2CID 41175541.
- ^ Abate, Chiara; Cassone, Giuseppe; Cordaro, Massimiliano; Giuffrè, Ottavia; Mollica-Nardo, Viviana; Ponterio, Rosina Celeste; Saija, Franz; Sponer, Jiri; Trusso, Sebastiano; Foti, Claudia (2021). "Understanding the behaviour of carnosine in aqueous solution: an experimental and quantum-based computational investigation on acid–base properties and complexation mechanisms with Ca 2+ and Mg 2+". New Journal of Chemistry. 45 (43): 20352–20364. doi:10.1039/D1NJ04094D. ISSN 1144-0546.
- ^ Swietach, Pawel; Youm, Jae-Boum; Saegusa, Noriko; Leem, Chae-Hun; Spitzer, Kenneth W.; Vaughan-Jones, Richard D. (2013-05-28). "Coupled Ca2+/H+ transport by cytoplasmic buffers regulates local Ca2+ and H+ ion signaling". Proceedings of the National Academy of Sciences of the United States of America. 110 (22): E2064–2073. doi:10.1073/pnas.1222433110. ISSN 1091-6490. PMC 3670334. PMID 23676270.
- ^ Eisner, David; Neher, Erwin; Taschenberger, Holger; Smith, Godfrey (2023-06-16). "Physiology of intracellular calcium buffering" (PDF). Physiological Reviews. 103 (4): 2767–2845. doi:10.1152/physrev.00042.2022. ISSN 1522-1210. PMID 37326298.